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ABSTRACT

The Region of Interest �ROI� detection stage of an Automatic Target Recognition �ATR� System serves
the crucial role of identifying candidate regions which may have potential targets� The large variability
in clutter �noise or countermeasures which provide target like characteristics� complicate the task of
developing accurate ROI determination algorithms�

Presented in this paper is a new paradigm for ROI determination based on the premise that disjoint
local approximation of the regions of a SAR image can provide discriminatory information for clutter
identi�cation� Speci�cally� regions containing targets are more likely to require complex approximators
�i�e� ones with more free parameters or a higher model order��

We show preliminary simulations results with two di�erent approximators �sigmoidal multi�layered
neural networks with lateral connections� and radial basis function neural networks with a model
selection criterion�� both of which attempt to produce a smooth approximation of disjoint local patches
of the SAR image with as few parameters as possible� Those patches of the image which require a
higher model order are then labeled as ROIs� Our preliminary results show that sigmoidal networks
provide a more consistent estimate of the model order than their radial basis function counterparts�
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�� INTRODUCTION

Automatic Target Recognition �ATR� in its simple form consists of the three steps shown below�

�� Region of Interest �ROI� or focus of attention determination�

	� Extraction of features from the regions identi�ed in Step � above�


� Classi�cation of the object �if any� in the ROI based on the features extracted in Step 	 above�
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When information from multiple sensors is available� one can form a single data stream on which
the above three steps can be applied� This could be termed as data level fusion� Alternatively� each of
the three steps may be independently applied to each data stream followed by a categorization which
is negotiated between the categorization obtained from each data stream �decision level fusion�� Time
varying information �motion provides a clue as to the functionality of the observed� can also provide
discriminatory information�

Irrespective of the suite of sensors used� ROI determination is an important step in any ATR system�
When the ROI determination stage produces a high rate of false alarms �ROIs which are discovered
by later recognition stage algorithms to contain only clutter� a signi�cant amount of time is wasted�
The ROI determination stage thus has to reduce the false alarm rate while ensuring that regions with
targets in them are not missed�

Within the context of Synthetic Aperture Radar �SAR� images� there have been a number of
approaches proposed for ROI determination� When the clutter characteristics are stationary and
Gaussian� the so called Constant False Alarm Rate �CFAR� �lter� which uses the pixel intensity relative
to the local mean can be used �see� for modi�cations in the non�Gaussian case�� Various �lters �such as
the whitening �lter�� or BCS�FCS�� can be used to enhance the contrast prior to CFAR application�
Multi�parameter CFAR may also be used�� A macro Gabor �lter composed of a set of real Gabor
functions has also been proposed��

The region of interest selection can itself utilize Steps 	 and 
 outlined above� Thus features may
be extracted �say from disjoint squares� and a classi�er constructed to label a square as �interesting�
or otherwise� For example�� a feed�forward neural network trained using back�propagation� is used to
obtain ROIs� Inputs to this network are derived from Gabor �lters� A similar approach reported uses
radial basis function neural networks operating on the wavelet decomposition of an image to obtain
regions of interest��

A disadvantage of any supervised ROI determination scheme is that its performance is directly
inuenced by the amount and quality of data that was used in training it� Due to the large variability
of clutter characteristics it may be very di�cult to arrive at a training data set which captures this
variability� Consequently� adaptive clutter characterization approaches have also been proposed� These
approaches assume that there will always be a large amount of clutter available in a SAR image and
hence adaptive characterization is possible� For example� a Gibbs distribution model can be constructed
towards approximating the joint pdf of pixels�� Such a pdf can be used in Bayesian inference to
ascertain if an image region is consistent with the pdf or deviates from it� In related approaches�
clutter is characterized based on statistical pattern recognition techniques��	

Other approaches include unsupervised methods based on vector quantization �with the number
of clusters decided a priori� to obtain regions of interest�� Due to the di�culty in a priori deciding
the number of clusters� the authors also report results using a topology representing network proposed
by���

This paper provides a novel approach to isolating regions of interest in SAR images� Our approach
is based on function approximation� and unlike previous approaches� does not require the presence
of a good training data set� Speci�cally� we obtain the lowest order model that can approximate the
return in disjoint squares of a SAR image� Those disjoint squares that require a higher model order
approximator �i�e� one with more free parameters� are then labeled as regions of interest� Towards
obtaining the lowest model order approximation of disjoint squares in a SAR image� we use two di�erent
approximators� The �rst of these is a sigmoidal multi�layered feed�forward neural network with selected
lateral connections amongst the hidden layer neurons���
�� The second of these is a radial basis function



Figure �� Lateral connections in a feed�forward architecture� Inputs and hidden layer neurons are
fully connected as are hidden layer and output layer neurons� Neuron j in the hidden layer also receives
the net input of neuron �j � �� in the hidden layer through a lateral connection
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To obtain the learning algorithm� we use gradient descent to minimize J�� For the hidden to the
output layer weights� we obtain�
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The weight update equations for the lateral weights are�
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for the input to the hidden layer weights are similar to the above�
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Further details on these weight update equations are available in���

It has been proved����� that if the forward weights are initialized to be equal� and the lateral weights
are initialized to be equal� then update of the weights using equations �
����� leads at convergence to
the following� hidden neurons � through t di�erentiate� neurons t through T behave identically� and
neurons T through m di�erentiate �t � T � m�� Consequently� the model order at convergence is
reected by �t�m� T ��

���� RADIAL BASIS FUNCTION NETWORK

Radial basis function networks����� are architecturally similar in topology to the standard feed�forward
neural networks� i�e� they consist of an input layer which has n inputs� a hidden layer of m neurons
with Gaussian �or multi�quadric� basis functions� and a layer of output neurons� In what follows� we
use the notation that was introduced in the previous sub�section� The output of the network is then�
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where� z�j is the output of the jth basis function which assuming is Gaussian can be written as�
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where wj is the center of the Gaussian and 
j reects the spread of the Gaussian�



Once again� we can de�ne a sum of squared error as in equation �	� and resort to gradient descent
to minimize the sum of squared errors� To avoid gradient descent� one can �x the centers and the
spreads of the Gaussians resulting in a linearly parameterized network for which the output�hidden
weights can be found using the Moore�Penrose inverse� For example� if Ypxo denotes all the desired
outputs� and Hpxm denotes the response of the basis functions� then the output�hidden weights Wmxo

can be obtained with�
W � �HTH���HTY ���

Rather than a�priori specifying the number m of basis functions to use� one can incrementally add
the basis functions relying on a model selection criterion �such as generalized cross�validation �GCV�
or the Bayesian Information Criterion �BIC�� to provide the stopping condition� In this paper� we stop
the addition of basis function at the point that BIC stops decreasing� The number of basis functions
used are then indicative of the model order that we seek�

�� SIMULATION RESULTS

We present preliminary simulations here based on an image in the MSTAR �PUBLIC� CLUTTER
CD�ROM��� The clutter CD�ROMs contain ground clutter imagery collected in the X�band at ��
foot resolution in stripmap mode at ���degree depression angles� Since these images are very large
�approximately ����x������ for this simulation� we isolated a 	��x	�� block starting from the top left
corner of the image identi�ed as HB����	 on the CD�ROM� The raw clutter image is shown in Figure
	� and the model order as determined by the two methods is shown in Figure 
� For the multi�layered
sigmoidal feed�forward neural network we used� 	 inputs �x and y coordinates�� �� sigmoidal hidden
neurons �and hence �� lateral weights�� and � sigmoidal output �magnitude of the return at �x� y��� The
forward weights were initialized to ���� and the lateral weights were initialized to ����� The forward
learning rate ��� w as ��
� and the lateral learning rate ��q� was ���� For the radial basis function
network case� we also used 	 inputs �x and y coordinates� and � output neuron �magnitude of the
return at �x� y��� The addition of neurons was stopped at the minima of BIC� From the results it may
be seen that the sigmoidal network provide a more consistent estimate of the model order than does
the radial basis function network� We suspect that this is primarily due to the local nature of radial
basis function networks� Further� the low model order �targets typically give us a model order of ��
or higher� as obtained by the sigmoidal network indicates the lack of a target in the image which is
consistent with the fact that this image is a ground clutter image�
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Figure �� SAR clutter image
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Figure �� Model order for �x� blocks as determined by multi�layered sigmoidal feed�forward neural
networks with lateral connections �top�� and radial basis function network that optimize a model
selection criterion �bottom�

�� CONCLUSIONS

In this paper we showed that the use of the model order of an approximator can serve as a valuable
discriminatory tool in ROI determination� In particular� the sigmoidal multi�layered feed�forward
neural networks seem to provide a consistent estimate of the model order� Though accurate� such
determination the model order for each disjoint square is a time consuming process� In our future work�
we seek to combine the speed of CFAR based approaches by evaluating CFAR labeled ROIs with the
sigmoidal model order based approach proposed herein� when the underlying data distribution disagrees
with that assumed in the CFAR model� This we anticipate will provide fast ROI determination without
sacri�cing the accuracy that the model order based approach seems to provide�
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